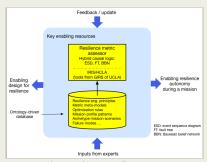
Assured Resilience for Autonomous Systems, Phase I

Completed Technology Project (2018 - 2019)


Project Introduction

While automation technologies advance faster than ever, gaps of resilience capabilities between autonomous and human-operated systems have not yet been filled in proportion. Accordingly, ATanalytics, in collaboration with The Center for Reliability and Resilience Engineering (CRRE) of The B. John Garrick Institute for the Risk Sciences at UCLA proposes to develop a methodology and toolkit for assured resilience of autonomous systems (ARAS). The central part of the ARAS methodology consists of two gap fillers: (1) an ontologydriven database supporting resilience engineering activities and resilience modeling, and (2) a resilience assessment and optimization employing a Hybrid Causal Logic (HCL) based software platform for resilience engineering support. The database includes resilience engineering principles, archetype mission scenarios, and metric meta models. With the HCL-based resilience assessor, a high-level model at the top layer enables resilience metrics to be defined at the mission-scenario level (or CONOPS level) and be subsequently mapped to the lower-level models to capture system specifics. Our innovation will be a significant step forward to resilience engineering standardization since (i) the database (a knowledge hub) and resilience models will be onboard resources enabling both design-for-resilience and onboard decision making for resilience assurance, and (ii) the HCL metrics-in-the-loop methodology is inherently generalizable for different levels of system abstraction, life-cycle, and mission phases.

Anticipated Benefits

Excellent NASA application opportunities exist for the ARAS methodology and engineering tools. In particular, the results from this effort are most applicable to two types of space missions. One type is robotics missions such as NASA Europa Clipper mission to Jupiter's frozen moon. The other type is crewed missions to which ground support for fault management is not practicable due to the unacceptable transmission delay of commands from the earth, such as the future Moon-To-Mars missions.

The ARAS methodology and its tool implementation will have a wide application domain. One example type of application is military vehicles, such as fighters, long-range missiles, UAVs, and UGVs. In addition, our ARAS methodology and tools are highly applicable to self-driving automobiles and civil aviation industries of which safety ratings are the key. Other application areas include patient vital-sign monitoring and natural disaster alert systems for which failures mean loss of life.

Assured Resilience for Autonomous Systems, Phase I

Table of Contents

Project Introduction	1	
Anticipated Benefits		
Primary U.S. Work Locations		
and Key Partners	2	
Project Transitions	2	
Organizational Responsibility	2	
Project Management	2	
Technology Maturity (TRL)	2	
Images	3	
Technology Areas	3	
Target Destinations	3	

Assured Resilience for Autonomous Systems, Phase I

Completed Technology Project (2018 - 2019)

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
ATanalytics	Lead Organization	Industry Minority-Owned Business, Small Disadvantaged Business (SDB), Women- Owned Small Business (WOSB)	Santa Monica, California
Ames Research Center(ARC)	Supporting Organization	NASA Center	Moffett Field, California

Primary U.S. Work Locations

California

Project Transitions

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

ATanalytics

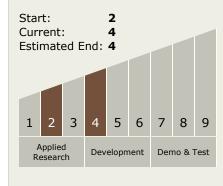
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

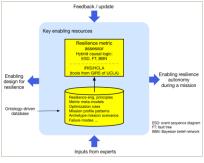
Principal Investigator:

Ann Tai

Technology Maturity (TRL)

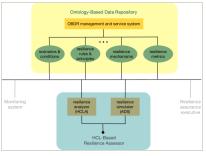
Assured Resilience for Autonomous Systems, Phase I

Completed Technology Project (2018 - 2019)



February 2019: Closed out

Closeout Documentation:


• Final Summary Chart(https://techport.nasa.gov/file/141272)

Images

Briefing Chart Image

Assured Resilience for Autonomous Systems, Phase I (https://techport.nasa.gov/imag e/130804)

Final Summary Chart Image

Assured Resilience for Autonomous Systems, Phase I (https://techport.nasa.gov/imag e/131047)

Technology Areas

Primary:

- **Target Destinations**

Mars, Others Inside the Solar System

